The radar method: an effective line search for piecewise linear concave functions
نویسنده
چکیده
The maximization of one-dimensional piecewise linear concave (OPLC) functions arises in the line search associated with the maximization of piecewise linear concave functions (e.g. Kelley cutting plane method). The OPLC line search is usually done by the next-break-point method, where one goes from break point to break point up to the optimum. If the number of break points is large this method will be computationally expensive. One can also use some classical derivative-free line search method as for example the golden section method. Such methods do not take advantage of the OPLC geometry. As an alternative, we propose an improved version of the so-called radar method, which maximizes an OPLC function by maximizing successive outer approximations. We prove superlinear and finite convergence of the radar method. Furthermore, our computational test shows that the radar method is highly effective independently from the number of break points.
منابع مشابه
gH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملNetwork Optimization with Concave Costs
In this paper the problem of minimum cost communication network design is considered where the costs are piecewise linear concave. Several methods are compared: Simulated Annealing method, a heuristic based on the method proposed by Minoux, and a lagrangian method based on lower bounding procedure.
متن کاملExplicit Univariate Global Optimization with Piecewise Linear Support Functions
Piecewise linear convex and concave support functions combined with Pijavskii’s method are proposed to be used for solving global optimization problems. Rules for constructing support functions are introduced.
متن کاملNetwork Optimization with Concave Costs
In this paper the problem of minimum cost communication network design is considered where the costs are piecewise linear concave. Several methods are compared: Simulated Annealing method, a heuristic based on the method proposed by Minoux, and a lagrangian method based on lower bounding procedure.
متن کاملGlobal Minimization via Piecewise-Linear Underestimation
Given a function on Rn with many multiple local minima we approximate it from below, via concave minimization, with a piecewise-linear convex function by using sample points from the given function. The piecewise-linear function is then minimized using a single linear program to obtain an approximation to the global minimum of the original function. Successive shrinking of the original search r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals OR
دوره 166 شماره
صفحات -
تاریخ انتشار 2009